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ABSTRACT 

An analytical study of the response of a single storey mono-
symmetric building model to a combined torsional and rotational ground 
motion is presented. The ground excitations are represented by idealized 
spectra and the building model is assumed to be elastic. 

A code provision for design eccentricity is proposed. The forces 
obtained by the use of the proposed method are compared with the 
analytical results obtained from the single storey model and are shown 
to provide an adequate design basis. 

INTRODUCTION 

Buildings subjected to earthquakes often undergo a torsional motion 
in addition to the translational motions in three orthogonal directions. 
The torsional motion may arise due to an eccentricity between the 
centres of mass and resistance at various floors of the building. A 
more direct cause of torsion, one which will excite a torsional response 
even in a symmetric building, is the rotational component of ground 
motion about a vertical axis. 

Most seismic codes make special provisions to allow for the forces 
arising from torsional oscillations. In particular, the National 
Building Code of Canada (NBCC) specifies that the torsional moments be 
obtained by assuming that at any level of the building the resultant 
seismic force acts through a point which is eccentric with respect to 
the centre of resistance at that level. The design eccentricity e

x 
 is 

given by 
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ex = 1.5e + 0.05D
(1) 

in which e is the distance between the centres of mass and resistance 
and D is a specified plan dimension at the level under consideration. 
The factor 1.5 is applied to the estimated eccentricity e to account for 
possible dynamic amplification. The second term in Eq. 1 is designated 
as accidental eccentricity and is supposed to take care of possible 
difference between the actual and estimated eccentricities as well as of 
the torsion arising from ground rotation. 

The torsional phenomenon and the validity of code provisions have 
been investigated by several researchers (1,2,3,4). All of these 
studies have used the single storey monosymmetric building model shown 
in Fig. 1(a). Tso and Demsey (2) have compared the magnitudes of 
eccentricities obtained from a dynamic analysis with those specified by 
the NBCC 1980. On the basis of this comparison, they conclude that the 
code provisions underestimate the torsional moments when the eccentricity 
of the building is small and the ratio of uncoupled torsional frequency 
to the uncoupled translational frequency is close to unity. Tsicnias 
and Hutchinson (3) arrive at a similar conclusion. 

From the foregoing, it appears there is some evidence to show that 
the present torsional provisions of the NBCC are non-conservative. 
There is also a certain amount of practical difficulty in the applica-
tion of the existing code provisions to the design of multistorey 
buildings. This paper therefore attempts to take a closer look at the 
torsional provisions. Much of the present work is based on an elastic 
analysis of the single storey building model of Fig. 1. It is however 
believed that the results will also apply to many multistorey buildings. 
It is shown that the present code provisions are not necessarily 
unconservative but that they can be somewhat simplified. 

EVALUATION OF CODE PROVISIONS 

It is desirable that any code provisions be reasonably simple to 
apply and be rational at the same time. If the torsion provisions of 
the NBCC are viewed in light of the foregoing criteria, following 
important considerations emerge. 

1. In a building it is reasonably simple to estimate the position 
of the centre of mass. Therefore, if the requirement is to apply the 
seismic forces either through the centre of mass or through a point 
away from the centre of mass at a distance which is a linear function of 
the plan dimension, the analysis of the structure is quite straight-
forward. On the other hand, if the point of application of the seismic 
forces is specified to be at a certain distance from the centre of 
resistance, which is a function of the eccentricity e, then 
the value of this eccentricity and hence the position of the centre of 
resistance must be determined. 

For multistorey buildings, there does not appear to be any accepted 
definition for the centre of resistance at a floor. It is possible to 
define the centre of resistance at any level as a point such that when a 
lateral force is applied through it, the level under consideration does 
not undergo any rotation (other levels may twist). Even when this defini- 



253 

tion is accepted, the actual determination of the centres of resistance 
at all floors of a real multistorey building may be quite complex and 
time consuming. In practice added difficulty arises from the fact that 
most commercially available two or three dimensional frame analysis 
programs do not have any simple mechanism for determining the locations 
of the centres of resistance. 

As an example, consider the ten storey building shown in Fig. 2. A 
rather complicated analysis taking the interaction of frames and shear 
walls into account is required to locate the centres of resistance whose 
positions are shown in the figure. It will be noted that centres of 
resistance do not lie on a vertical line, eventhough the frames and 
shearwalls have a uniform section throughout the height. An even more 
dramatic illustration of the variation in the location of the centre of 
resistance is provided by the building shown in Fig. 3., where the 
eccentricity varies from - 143.7 in.at  the 2nd floor level to +104.3 in. 
at the roof level even as the frame and shearwall sections remain uniform. 

2. Studies on the effect of torsional ground motion (4,5) have 
shown that often such effects may be more important than those due to 
dynamic amplification caused by coupling. This is particularly so when 
the ratio of the uncoupled torsional frequency to the uncoupled transla-
tional frequency is substantially greater than 1. Also, the contribution 
of ground torque takes added significance when the plan eccentricity is stall. 

3. From the point of view of design for seismic forces, the maximum 
force induced in a lateral resisting element is of greater significance 
than the maximum values of the storey shears and torques. Consider the 
single storey model of Fig.l. The force on a lateral resisting element 
can be obtained by the application of the maximum seismic shear through 
the centre of resistance together with the maximum seismic torque about 
the same point. A more direct method of obtaining such force would be 
to obtain the maximum displacement of the resisting element and to 
multiply this displacement by the stiffness of the stiffness. Because of 
the dynamic nature of the problem, the results obtained by the two 
methods will not be identical. 

The foregoing is best explained by considering an example, say of 
the model shown in Fig.l. Figure lb shows the two vibration modes of the 
model. It will be noted that for element 'a', which is farthest from the 
centre of resistance, the lateral displacement in the second mode due to 
torsion counteracts that due to shear. Therefore to obtain the resultant 
displacement of 'a' the displacements in each of the two modes should be 
separately evaluated and then superposed. The alternative method of 
obtaining the resultant torque and shear and then using them to obtain 
the displacement will give an exaggerated value. 

In the remaining part of this paper, a detailed analysis is 
presented of the building model of Fig. 1. An alternative torsion 
provision which fulfils some of the criteria mentioned in the foregoing 
paragraphs is presented and the design eccentricities and edge displace-
ments derived from the proposed method are compared with their values 
obtained from analyses. 
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ANALYSIS PROCEDURE 

The single storey building model shown in Fig.l consists of a 
rectangular rigid deck supported on axially rigid columns and/or walls. 
The mass and stiffness are so distributed that the model has one axis of 
symmetry as shown. In the analysis presented here, two degrees of freedom 
are considered: translation v normal to the direction of symmetry, and the 
rotation 6 about a vertical axis, both considered at the centre of 
resistance and measured relative to the ground. The third degree of 
freedom, translation parallel to the axis of symmetry, is uncoupled from 
the first two, and can be considered seperately if desired. 

The undamped equations of motion of the model are given by 
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in which, m = the mass of the deck, e = the static eccentricity, p= the 
radius of gyration of the deck about the centre of resistance, kv  = the 
translational stiffness, ice = the torsional stiffness about the centre of 
resistance, ;.; = the translational ground acceleration and 0 = the 
torsional ground acceleration both measured about the centregof mass, 
w = (k /m)42, the uncoupled translational frequency, we= (ke/mp2)', the 
uncoupled torsional frequency, 0 = w0/wv, e* 

 = e/p, it) =Qp0 and if) =Qpij g g. 

The equations of motion (Eq.2) can be solved by the mode superposi-
tion method. The natural frequencies, wn, and the mode shapes,{an}, of 
the system required for a modal solution are obtained by solving Eq. 2 
with .7
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The modal equations are obtained by introducing the following trans-
formation in Eq. 3 

2 
Yn 

 {a
n} 

n=1 
(7)  

where Yn  are the modal coordinates. Damping is intoduced at this stage 
directly into the modal equations by defining appropriate viscous damping 
factors. 
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The maximum values of the modal coordinates Yn  can be obtained 
directly from response spectra. For ground translation two different 
types of spectral shapes are considered: a flat response spectrum in which 
the spectral acceleration does not vary with con, and a hoperbolic 
response spectrum in which the acceleration varies directly as wn  or 
inversely as the period. Response spectra for torsional ground motion 
are derived from the translational spectra by a procedure suggested by 
Newmark (4,5). 

The response quantities of interest in the present study are the 
base shear V normal to the direction of symmetry, the base torque T at 
the centre of resistance and the displacement A of the edge of the deck 
farthest from the centre of resistance. 

The maximum value of a response quantity Q in each natural mode of 
vibration can be obtained from the maximum values of the corresponding 
modal coordinates by using an appropriate transformation. The modal 
maxima Qn  are then combined according to the following equation (1). 

2 2 Qn Qm Q2 = 2 Q2 +£ E 2— (8) n=1 n n=1 m=1 1+E mm 
non 

in which 
e
n 
 =	 (9) 

11:7 wn (um 
w

n 
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and the damping factor E is considered to be the same in each mode of 
vibration. 

For the presentation of results, it is convenient to normalize the 
modal maxima for the base shear by the base shear, Vo= mSav(43n,  0' of  
the uncoupled system. The torques are normalized by mrSav(wn, 0, 
in which r is the radius of gyration about the mass centre, and the dis-
placements are normalized by Ao = Vo/kv. The normalized values are 
denoted respectively by V, t and T. 

The modal responses for any one type of excitation can be combined 
according to Eq. 8 to give the total response due to that excitation. If 
the excitation has more than one component, the responses due to indivi-
dual components can be further-superimposed by the root sum square 
combination. 

RESPONSE OF SINGLE STOREY BUILDING MODEL 

Analytical results were obtained for the response of the single 
storey building model subjected to ground motions represented by a flat 
and a hyperbolic translational acceleration spectrum, each with its 
associated torsional response spectrum (4). The damping was assumed to 
be 5% of the critical in each of the two modes. For brevity, the results 
for only the flat spectrum are presented here. 

The .Component of response due to ground rotation depends on the time 
T that a shear wave, takes to travel a distance D,the plan dimension. 
Results are presented here for three different values of T: 0.05s, 0.1s 
and 0.15s. For 1=0.1 the response values are shown for each of the 
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two excitation components; translation and rotational. The resultant 
response obtained by a superposition of the two components is also shown. 
For other values of T only the resultant response is shown. 

e 
Figs. 4 and '5

d 
show the normalized dynamic eccentricity = T and 

the normalized edge displacement A plotted as functions of e/r for 0=1 and 
1.5 and three different values of T. 

Keeping in view the desirable criteria for a code provision on 
torsion stated previously, the following expression is proposed for 
design eccentricity 

ex  = e + 0.1D (10)  

The normalized design eccentricity can be obtained directly from Eq. 10 
on division by r. The normalized edge displacement that corresponds to 
the design eccentricity of Eq. 10 is given by 

ex/r(e/r  27)  
A = 1 +	 (11) 

(e/r)
2
+1 

Values of ex/r  and 4 obtained from Eqs. 10 and 11 are also shown in 
Figs. 4 and 5. The analytical results show that the ground torque makes 
a significant contribution to the total response, particularly for 
systems with small eccentricities. Noting that the component of response, 
due to translation does not vary with T, it is apparent the effect of 
ground torque on response increases as the travel time of the shear wave 
increases. 

Figs. 4a and 5a show that the design eccentricity obtained from 
Eq. 10 is smaller than its analytical value, at least for systems with 
small and moderate eccentricities. This does not however mean that the 
use of Eq. 10 will lead to non-conservative estimates of the design 
forces in lateral resisting elements because when the edge displacements 
calculated from Eq. 11 are compared with those obtained from dynamic 
analyses, as shown in Figs. 4b and 5b, an altogether different picture 
emerges. The design eccentricity given by Eq. 10 now appears to be 
quite satisfactory. 

The results obtained for hyperbolic and a combination of flat and 
hyperbole spectra (not presented here) lead to similar conclusions. 

SUMMARY AND CONCLUSIONS 

Based on the analytical study of the response of a single storey 
building subjected to ground motion, a proposal is made for a design 
eccentricity which when used with the equivalent static load method of 
seismic design will account for the presence of torsional forces. The 
expression proposed for the eccentricity is somewhat similar to the one 
in the current Uniform Building Code. It is simple in application and 
does not require explicit determination of the centres of resistance. 

For many multistorey buildings, the response can be shown to be 
governed by the response of an associated single storey model (1). The 
conclusions drawn here for a single storey building are therefore 
expected to apply to such multistorey buildings. 
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